Scattering in chiral strong backgrounds

Tim Adamo University of Edinburgh

ITMP Moscow

25 November 2020

With L. Mason & A. Sharma [2003.13501,2010.14996, wip] see also work with E. Casali, A. Ilderton & S. Nekovar

Amplitudes: what's it all about?

To compute S-matrix, usually follow recipe:

- Perturbation theory around trivial background
- Space-time Lagrangian \rightarrow Feynman rules
- Draw diagrams & compute

Amplitudes: what's it all about?

To compute S-matrix, usually follow recipe:

- Perturbation theory around trivial background
- ullet Space-time Lagrangian o Feynman rules
- Draw diagrams & compute

Last 20+ years: look for alternative recipes.

- Lots of progress, especially for massless QFTs
- All-multiplicity formulae at tree-level and beyond
- Divorced from standard space-time perturbation theory

Amplitudes: what's it all about?

To compute S-matrix, usually follow recipe:

- Perturbation theory around trivial background
- Space-time Lagrangian \rightarrow Feynman rules
- Draw diagrams & compute

Last 20+ years: look for alternative recipes.

- Lots of progress, especially for massless QFTs
- All-multiplicity formulae at tree-level and beyond
- Divorced from standard space-time perturbation theory

New formulation(s) of perturbative QFT?

Examples

Consider Yang-Mills theory. At tree-level, we know everything:

$$A_{n,0}^{(0)} = \delta^4 \left(\sum_{i=1}^n k_i \right) \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$
 [Parke-Taylor]

Examples

Consider Yang-Mills theory. At tree-level, we know everything:

$$A_{n,0}^{(0)} = \delta^4 \left(\sum_{i=1}^n k_i \right) \frac{\langle ij \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$
 [Parke-Taylor]

$$A_{n,k}^{(0)} = \int \frac{\prod_{r=0}^{k+1} \mathrm{d}^{4|4} U_r}{\mathrm{vol} \, \mathrm{GL}(2,\mathbb{C})} \prod_{i=1}^n \frac{\mathrm{d}\sigma_i \, \mathcal{A}_i(Z(\sigma_i))}{\sigma_i - \sigma_{i+1}} \quad \text{\tiny [Roiban-Spradlin-Volovich-Witten]}$$

Examples

Consider Yang-Mills theory. At tree-level, we know everything:

$$A_{n,0}^{(0)} = \delta^4 \left(\sum_{i=1}^n k_i \right) rac{\langle i j \rangle^4}{\langle 1 \, 2 \rangle \, \langle 2 \, 3 \rangle \, \cdots \langle n \, 1 \rangle} \quad {}^{ ext{\tiny [Parke-Taylor]}}$$

$$A_{n,k}^{(0)} = \int \frac{\prod_{r=0}^{k+1} \mathrm{d}^{4|4} U_r}{\mathrm{vol} \, \mathrm{GL}(2,\mathbb{C})} \prod_{i=1}^n \frac{\mathrm{d}\sigma_i \, \mathcal{A}_i(Z(\sigma_i))}{\sigma_i - \sigma_{i+1}} \quad \text{\tiny [Roiban-Spradlin-Volovich-Witten]}$$

$$A_n^{(0)} = \delta^d \left(\sum_{i=1}^n k_i \right) \int d\mu_n \prod_{j=1}^n \delta(\mathcal{S}_j) \prod_{i=1}^n \frac{1}{\sigma_i - \sigma_{i+1}} \operatorname{Pf}'(M)$$

[Cachazo-He-Yuan]

Strong backgrounds

What about amplitudes on strong (non-trivial) backgrounds?

Strong backgrounds

What about amplitudes on strong (non-trivial) backgrounds?

MANY reasons to be interested:

- Strong field QED/laser physics (electromagnetic plane waves)
- High-energy hadron scattering/colour glass condensates (Yang-Mills plane waves & shockwaves)
- Gravitational waves (gravitational plane waves & shockwaves)
- Cosmology (de Sitter or FLRW space-times)
- Strongly-coupled CFTs/holography (anti-de Sitter)
- Non-perturbative physics in general

Knowledge gap

What do we know about amplitudes in strong backgrounds?

Knowledge gap

What do we know about amplitudes in strong backgrounds?

Best results at tree-level: 4-points

- QED in plane wave [Ilderton,...]
- YM/GR in AdS [d'Hoker-Freedman-et al., Raju]
- Contact amplitudes in AdS [Nagaraj-Ponomarev]
- YM in plane wave [TA-Casali-Mason-Nekovar]

But a novel formulation of QFT should work on *any* background...

Today

Question:

Can we make all-multiplicity statements about scattering in strong backgrounds?

Today

Question:

Can we make all-multiplicity statements about scattering in strong backgrounds?

Strategy:

Consider scattering on strong *chiral*, *source-free*, *asymptotically flat* backgrounds in 4d

Projective geometry of \mathscr{I}

Null boundary of $\mathbb{R}^{1,3}$: $\mathscr{I}=\mathscr{I}^-\cup\mathscr{I}^+$, $\mathscr{I}^\pm\cong\mathbb{R}\times S^2$. Homogeneous coords on \mathscr{I}^+ [Sparling, Eastwood-Tod]:

$$(u, \lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}}) \sim (|a|^2 u, a\lambda_{\alpha}, \bar{a}\bar{\lambda}_{\dot{\alpha}}), \qquad \forall a \in \mathbb{C}^*$$

$$\mathrm{d} s^2_{\mathscr{I}^+} = 0 \times \mathrm{d} u^2 + \mathrm{D} \lambda \, \mathrm{D} \bar{\lambda}$$
, where $\mathrm{D} \lambda := \langle \lambda \, \mathrm{d} \lambda \rangle = \lambda^\alpha \mathrm{d} \lambda_\alpha$
View \mathscr{I}^+ as total space of $\mathcal{O}_{\mathbb{R}}(1,1) \to \mathbb{P}^1$

Projective geometry of \mathscr{I}

Null boundary of $\mathbb{R}^{1,3}$: $\mathscr{I}=\mathscr{I}^-\cup\mathscr{I}^+$, $\mathscr{I}^\pm\cong\mathbb{R}\times S^2$. Homogeneous coords on \mathscr{I}^+ [Sparling, Eastwood-Tod]:

$$(u, \lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}}) \sim (|a|^2 u, a\lambda_{\alpha}, \bar{a}\bar{\lambda}_{\dot{\alpha}}), \qquad \forall a \in \mathbb{C}^*$$

$$\mathrm{d} s^2_{\mathscr{J}^+} = 0 imes \mathrm{d} u^2 + \mathrm{D} \lambda \, \mathrm{D} \bar{\lambda}$$
, where $\mathrm{D} \lambda := \langle \lambda \, \mathrm{d} \lambda \rangle = \lambda^{lpha} \mathrm{d} \lambda_{lpha}$

View \mathscr{I}^+ as total space of $\mathcal{O}_{\mathbb{R}}(1,1) o \mathbb{P}^1$

Line bundles $\mathcal{O}(p,q) o \mathscr{I}^+$ encode spin/conformal weights

$$s=\frac{p-q}{2}, \qquad w=\frac{p+q}{2}$$

Radiative gauge fields

Asymptotically flat gauge field:

$$A|_{\mathscr{I}^+} = \mathcal{A}^0(u,\lambda,ar{\lambda})\,\mathrm{D}\lambda + ar{\mathcal{A}}^0(u,\lambda,ar{\lambda})\,\mathrm{D}ar{\lambda}$$

$$\mathcal{A}^0$$
 in $\mathcal{O}(-2,0)\otimes \mathfrak{g}$, $\bar{\mathcal{A}}^0$ in $\mathcal{O}(0,-2)\otimes \mathfrak{g}$

Define broadcasting function $\phi_2 = \partial_u A^0$ in $\mathcal{O}(-3, -1) \otimes \mathfrak{g}$.

Radiative gauge fields

Asymptotically flat gauge field:

$$A|_{\mathscr{I}^+} = \mathcal{A}^0(u,\lambda,\bar{\lambda})\,\mathrm{D}\lambda + \bar{\mathcal{A}}^0(u,\lambda,\bar{\lambda})\,\mathrm{D}\bar{\lambda}$$

$$\mathcal{A}^0$$
 in $\mathcal{O}(-2,0)\otimes \mathfrak{g}$, $\bar{\mathcal{A}}^0$ in $\mathcal{O}(0,-2)\otimes \mathfrak{g}$

Define broadcasting function $\phi_2 = \partial_u A^0$ in $\mathcal{O}(-3, -1) \otimes \mathfrak{g}$.

Radiative gauge field: uniquely characterized by ϕ_2 , $\bar{\phi}_2$.

Key example: Yang-Mills plane waves [Trautman, Basler-Hadicke,

TA-Casali-Mason-Nekovar]

Self-dual radiative fields

Field strength decomposes into SD/ASD parts:

$$F = F^+ + F^-, \quad *F^{\pm} = \pm i F^{\pm}$$

Asymptotically

$$F^+|_{\mathscr{I}^+} = \partial_u \bar{\mathcal{A}}^0 \, \mathrm{d} u \wedge \mathrm{D} \bar{\lambda} \,, \qquad F^-|_{\mathscr{I}^+} = \partial_u \mathcal{A}^0 \, \mathrm{d} u \wedge \mathrm{D} \lambda$$

Self-dual radiative fields

Field strength decomposes into SD/ASD parts:

$$F = F^+ + F^-, \qquad *F^{\pm} = \pm i F^{\pm}$$

Asymptotically

$$F^+|_{\mathscr{I}^+} = \partial_u \bar{\mathcal{A}}^0 \, \mathrm{d} u \wedge \mathrm{D} \bar{\lambda} \,, \qquad F^-|_{\mathscr{I}^+} = \partial_u \mathcal{A}^0 \, \mathrm{d} u \wedge \mathrm{D} \lambda$$

Complexify: \mathcal{A}^0 , $\tilde{\mathcal{A}}^0$ independent (i.e., $F^- \neq \overline{F^+}$).

Self-dual radiative fields

Field strength decomposes into SD/ASD parts:

$$F = F^+ + F^-, \qquad *F^{\pm} = \pm i F^{\pm}$$

Asymptotically

$$F^+|_{\mathscr{I}^+} = \partial_u \bar{\mathcal{A}}^0 \, \mathrm{d} u \wedge \mathrm{D} \bar{\lambda} \,, \qquad F^-|_{\mathscr{I}^+} = \partial_u \mathcal{A}^0 \, \mathrm{d} u \wedge \mathrm{D} \lambda$$

Complexify: \mathcal{A}^0 , $\tilde{\mathcal{A}}^0$ independent (i.e., $F^- \neq \overline{F^+}$).

Def: A *SD radiative gauge field* is a rad. gauge field with $A^0 = 0$, $\tilde{A}^0 \neq 0$.

Summary

SD radiative gauge fields:

- complex/chiral 4d gauge fields
- purely radiative, source free
- ullet characterized by free data $ilde{\phi}_2=\partial_u ilde{\mathcal{A}}^0$
- ullet asymptotically flat o S-matrix natural observable
- include (multi-)plane waves

Summary

SD radiative gauge fields:

- complex/chiral 4d gauge fields
- purely radiative, source free
- ullet characterized by free data $ilde{\phi}_2=\partial_u ilde{\mathcal{A}}^0$
- asymptotically flat \rightarrow S-matrix natural observable
- include (multi-)plane waves

Similar story for gravity (SD radiative space-times)

Can we compute gluon scattering amplitudes on a SD radiative background?

Seems hard (impossible) due to functional d.o.f...

Can we compute gluon scattering amplitudes on a SD radiative background?

Seems hard (impossible) due to functional d.o.f...

...any many new subtleties vs. trivial background:

- No momentum conservation integrals always left over due to $\tilde{\mathcal{A}}^0$
- Memory effect [Bieri-Garfinkle, Pasterski, TA-Casali-Mason-Nekovar]
- Tails [Günther-Wünsch, Mason, Harte]

Seems like a hard problem. However...

Shift YM action by topological term:

$$-\frac{1}{2\,\mathrm{g}^2}\int \mathrm{tr}\, F\wedge *F + \frac{1}{8\,\mathrm{g}^2}\int \mathrm{tr}\, F\wedge F = -\frac{1}{2\,\mathrm{g}^2}\int \mathrm{tr}\, F^-\wedge F^-$$

Seems like a hard problem. However...

Shift YM action by topological term:

$$-\frac{1}{2\,{\rm g}^2}\int {\rm tr}\, F\wedge *F + \frac{1}{8\,{\rm g}^2}\int {\rm tr}\, F\wedge F = -\frac{1}{2\,{\rm g}^2}\int {\rm tr}\, F^-\wedge F^-$$

Introduce Lagrange multiplier $B \in \Omega^2_-(\mathfrak{g})$.

$$-rac{1}{2\,\mathrm{g}^2}\int\mathrm{tr}\, {\it F}^-\wedge {\it F}^-$$
 equivalent to

$$S[A, B] = \int \operatorname{tr} F^- \wedge B + \frac{g^2}{2} \int \operatorname{tr} B \wedge B$$

Field equations:

$$F^- = -g^2 B, \qquad DB = 0$$

Upshot

Yang-Mills admits a pert. expansion around SD sector [Chalmers-Siegel]

Expanding around SD rad. background 'no worse' than expanding around a *trivial* background!

Upshot

Yang-Mills admits a pert. expansion around SD sector [Chalmers-Siegel]

Expanding around SD rad. background 'no worse' than expanding around a *trivial* background!

Need: something that manifests the integrability/triviality of the SD background...

Twistor theory

Twistor space:
$$Z^A=\left(\mu^{\dotlpha},\lambda_lpha
ight)$$
 homog. coords. on \mathbb{CP}^3
$$\mathbb{PT}=\mathbb{CP}^3\setminus\{\lambda_lpha=0\}$$

$$x\in\mathbb{C}^4$$
 given by $X\cong\mathbb{CP}^1\subset\mathbb{PT}$ via $\mu^{\dotlpha}=x^{\alpha\dotlpha}\lambda_lpha$

Twistor theory

Twistor space: $Z^A=\left(\mu^{\dotlpha},\lambda_lpha
ight)$ homog. coords. on \mathbb{CP}^3 $\mathbb{PT}=\mathbb{CP}^3\setminus\{\lambda_lpha=0\}$

 $x\in\mathbb{C}^4$ given by $X\cong\mathbb{CP}^1\subset\mathbb{PT}$ via $\mu^{\dot{lpha}}=x^{lpha\dot{lpha}}\lambda_{lpha}$

On a flat background:

- Massless free fields \leftrightarrow cohomology on \mathbb{PT} [Penrose, Sparling, Eastwood-Penrose-Wells]
- Representation for on-shell scattering kinematics [Hodges]
- Full tree-level S-matrix of ${\cal N}=4$ SYM [Witten, Berkovits, Roiban-Spradlin-Volovich]
- Full tree-level S-matrix of $\mathcal{N}=8$ SUGRA [Cachazo-Skinner]

What's this got to do with perturbation theory on SD backgrounds?

What's this got to do with perturbation theory on SD backgrounds?

Theorem [Ward, 1977]

There is a 1:1 correspondence between:

- SD SU(N) Yang-Mills fields on \mathbb{C}^4 , and
- rank N holomorphic vector bundles $E \to \mathbb{PT}$ trivial on every $X \subset \mathbb{PT}$ (+ technical conditions)

What's this got to do with perturbation theory on SD backgrounds?

Theorem [Ward, 1977]

There is a 1:1 correspondence between:

- SD SU(N) Yang-Mills fields on \mathbb{C}^4 , and
- rank N holomorphic vector bundles $E \to \mathbb{PT}$ trivial on every $X \subset \mathbb{PT}$ (+ technical conditions)

Punchline: twistor theory trivializes the SD sector

Upshot

SD sector encoded by integrable partial connection on $E \to \mathbb{PT}$:

$$ar{D} = ar{\partial} + A$$
, $A \in \Omega^{0,1}(\operatorname{End} E)$, $ar{D}^2 = 0$

Upshot

SD sector encoded by integrable partial connection on $E \to \mathbb{PT}$:

$$ar{\mathcal{D}} = ar{\partial} + \mathsf{A} \,, \qquad \mathsf{A} \in \Omega^{0,1}(\operatorname{End} \hspace{-.05cm} E) \,, \qquad ar{\mathcal{D}}^2 = 0$$

For SD radiative fields [Sparling, Newman, Eastwood-Tod]

$$A(Z) = \tilde{\mathcal{A}}^{0}(\mu^{\dot{\alpha}}\bar{\lambda}_{\dot{\alpha}}, \lambda, \bar{\lambda})\,\mathrm{D}\bar{\lambda}$$

Technical assumptions $\Rightarrow E|_X$ holomorphically trivial:

$$\exists H(x,\lambda,\bar{\lambda}) : \bar{D}|_X H = 0$$

[Sparling, Mason-Skinner]

Technical assumptions $\Rightarrow E|_X$ holomorphically trivial:

$$\exists H(x,\lambda,\bar{\lambda}) : \bar{D}|_X H = 0$$

[Sparling, Mason-Skinner]

H encodes SD rad. gauge field on $\mathbb{R}^{1,3}$:

$$\mathsf{H}^{-1} \, \lambda^{\alpha} \partial_{\alpha \dot{\alpha}} \mathsf{H} = -\mathrm{i} \, \lambda^{\alpha} \, A_{\alpha \dot{\alpha}}(x)$$

Example: Cartan-valued background

Suppose $\tilde{\mathcal{A}}^0$ valued in $\mathfrak{h} \subset \mathfrak{g}$. Then:

$$H(x, \lambda) = \exp[-g(x, \lambda)]$$

where
$$\mathsf{A}|_{\mathsf{x}}=ar{\partial}|_{\mathsf{X}}\mathsf{g}$$

$$g(x,\lambda) = \frac{1}{2\pi i} \int_{X} \frac{\mathrm{D}\lambda' \wedge \mathrm{D}\bar{\lambda}'}{\langle \lambda \, \lambda' \rangle} \frac{\langle o \, \lambda \rangle}{\langle o \, \lambda' \rangle} \, \tilde{\mathcal{A}}^{0}(x,\lambda')$$

Example: Cartan-valued background

Suppose $\tilde{\mathcal{A}}^0$ valued in $\mathfrak{h} \subset \mathfrak{g}$. Then:

$$H(x, \lambda) = \exp[-g(x, \lambda)]$$

where $\mathsf{A}|_{\scriptscriptstyle X}=ar\partial|_{X}\mathsf{g}$ \Rightarrow

$$g(x,\lambda) = \frac{1}{2\pi i} \int_{X} \frac{\mathrm{D}\lambda' \wedge \mathrm{D}\bar{\lambda}'}{\langle \lambda \, \lambda' \rangle} \frac{\langle o \, \lambda \rangle}{\langle o \, \lambda' \rangle} \, \tilde{\mathcal{A}}^{0}(x,\lambda')$$

Recover SD rad. field by Kirchoff-d'Adhemar formula:

$$A_{\alpha\dot{\alpha}}(x) = \frac{o_{\alpha}}{2\pi} \int_{x} \frac{\mathrm{D}\lambda \wedge \mathrm{D}\bar{\lambda}}{\langle o \, \lambda \rangle} \, \bar{\lambda}_{\dot{\alpha}} \, \tilde{\phi}_{2}(x,\lambda)$$

Gluon perturbations

Gluon perturbations encoded by cohomology:

- + helicity gluon $\leftrightarrow a \in H^{0,1}_{\bar{D}}(\mathbb{PT},\mathcal{O} \otimes \operatorname{End} \mathcal{E})$
- helicity gluon \leftrightarrow $b \in H_{\bar{D}}^{0,1}(\mathbb{PT}, \mathcal{O}(-4) \otimes \operatorname{End} E)$

Gluon perturbations

Gluon perturbations encoded by cohomology:

- + helicity gluon $\leftrightarrow a \in H^{0,1}_{\bar{D}}(\mathbb{PT},\mathcal{O}\otimes \mathrm{End} E)$
- helicity gluon $\leftrightarrow b \in H_{\bar{D}}^{\bar{0},1}(\mathbb{PT},\mathcal{O}(-4) \otimes \operatorname{End} E)$

For gluons with asymp. momentum $k_{\alpha\dot{lpha}}=\kappa_{lpha} ilde{\kappa}_{\dot{lpha}}$

$$\mathbf{a} = \mathsf{T}\,\frac{\langle\xi\,\lambda\rangle}{\langle\xi\,\kappa\rangle}\bar{\partial}\left(\frac{1}{\langle\lambda\,\kappa\rangle}\right)\,\operatorname{e}^{\mathrm{i}\frac{\langle\xi\,\kappa\rangle}{\langle\xi\,\lambda\rangle}\,[\mu\,\tilde{\kappa}]}$$

$$b = \mathsf{T} \, \frac{\langle \xi \, \kappa \rangle^3}{\langle \xi \, \lambda \rangle^3} \bar{\partial} \left(\frac{1}{\langle \lambda \, \kappa \rangle} \right) \, \mathrm{e}^{\mathrm{i} \frac{\langle \xi \, \kappa \rangle}{\langle \xi \, \lambda \rangle} \, [\mu \, \tilde{\kappa}]}$$

MHV amplitudes

Generating functional:

$$rac{1}{\mathrm{g}^2}\int\mathrm{d}^4x\,\mathrm{tr}\left(B^{lphaeta}\,B_{lphaeta}
ight)\,,\qquad\mathrm{where}\quad D^{lpha\dot{lpha}}B_{lphaeta}=0$$

for $D_{\alpha\dot{lpha}}=\partial_{\alpha\dot{lpha}}-\mathrm{i}A_{\alpha\dot{lpha}}$, a SD gauge connection +-helicity gluons \leftrightarrow expand SD background [Mason-Skinner]

MHV amplitudes

Generating functional:

$$rac{1}{\mathrm{g}^2}\int\mathrm{d}^4x\,\mathrm{tr}\left(B^{lphaeta}\,B_{lphaeta}
ight)\;,\qquad\mathrm{where}\quad D^{lpha\dot{lpha}}B_{lphaeta}=0$$

for $D_{\alpha\dot{\alpha}}=\partial_{\alpha\dot{\alpha}}-\mathrm{i}A_{\alpha\dot{\alpha}}$, a SD gauge connection

+-helicity gluons \leftrightarrow expand SD background [Mason-Skinner]

Key idea: take SD rad. background \oplus + helicity gluons

Difficult on space-time, easy on twistor space!

MHV generating functional 2.0

Generating functional in \mathbb{PT} :

$$\int \mathrm{d}^4 x \int\limits_{X_1 \times X_2} \mathrm{D} \lambda_1 \, \mathrm{D} \lambda_2 \, \langle \lambda_1 \, \lambda_2 \rangle^2 \, \mathrm{tr} \left[\widehat{\mathsf{H}}_1^{-1} \, b_1 \, \widehat{\mathsf{H}}_1 \, \widehat{\mathsf{H}}_2^{-1} \, b_2 \, \widehat{\mathsf{H}}_2 \right]$$

- $b_{1,2} \in H^{0,1}_{\bar{D}}(\mathbb{PT}, \mathcal{O}(-4) \otimes \operatorname{End} E)$
- $H_{1,2} = H(x, \lambda_{1,2})$ holomorphic frames for

$$\bar{\partial} + A + \sum_{i=3}^{n} a_i, \qquad a_i \in H^{0,1}_{\bar{D}}(\mathbb{PT}, \mathcal{O} \otimes \operatorname{End} E)$$

Perturbative expansion

Expand $\widehat{H}_1 \widehat{H}_2^{-1}$ as Born series in $\{a_i\}$:

$$\widehat{\mathsf{H}}_1 \, \widehat{\mathsf{H}}_2^{-1} = \sum_{m=0}^{\infty} \left(\frac{-1}{2\pi \mathrm{i}} \right)^m \int_{X^m} \frac{\mathsf{H}_1 \, \langle 1 \, 2 \rangle}{\langle m+2 \, 2 \rangle} \left(\prod_{p=3}^{m+2} \frac{\mathsf{H}_p^{-1} \, a_p \, \mathsf{H}_p \, \mathrm{D} \lambda_p}{\langle p-1 \, p \rangle} \right) \, \mathsf{H}_2^{-1}$$

Perturbative expansion

Expand $\widehat{H}_1 \widehat{H}_2^{-1}$ as Born series in $\{a_i\}$:

$$\widehat{H}_{1} \widehat{H}_{2}^{-1} = \sum_{m=0}^{\infty} \left(\frac{-1}{2\pi i} \right)^{m} \int_{X^{m}} \frac{H_{1} \langle 12 \rangle}{\langle m+22 \rangle} \left(\prod_{p=3}^{m+2} \frac{H_{p}^{-1} a_{p} H_{p} D \lambda_{p}}{\langle p-1 p \rangle} \right) H_{2}^{-1}$$

Final result (trivially extended to $\mathcal{N}=4$ SUSY):

$$\int \mathrm{d}^{4|8} x \, \int_{X^n} \mathrm{tr} \left(\prod_{i=1}^n \frac{\mathrm{D} \lambda_i \, \mathsf{H}_i^{-1} \, \mathsf{a}_i \, \mathsf{H}_i}{\langle i \, i+1 \rangle} \right)$$

Example: Cartan-valued background

 \mathbb{CP}^1 integrals can be performed explicitly Let gluons r,s have negative helicity:

$$\frac{\langle \kappa_r \, \kappa_s \rangle^4}{\langle \kappa_1 \, \kappa_2 \rangle \cdots \langle \kappa_n \, \kappa_1 \rangle} \int \mathrm{d}^4 x \, \exp \left[\sum_{i=1}^n \left(\mathrm{i} \, k_i \cdot x + e_i \, g(x, \kappa_i) \right) \right]$$

where $\{e_i\}$ are charges wrt background, $\sum_i e_i = 0$.

Example: Cartan-valued background

 \mathbb{CP}^1 integrals can be performed explicitly Let gluons r,s have negative helicity:

$$\frac{\langle \kappa_r \, \kappa_s \rangle^4}{\langle \kappa_1 \, \kappa_2 \rangle \cdots \langle \kappa_n \, \kappa_1 \rangle} \int \mathrm{d}^4 x \, \exp \left[\sum_{i=1}^n \left(\mathrm{i} \, k_i \cdot x + e_i \, g(x, \kappa_i) \right) \right]$$

where $\{e_i\}$ are charges wrt background, $\sum_i e_i = 0$. Further simplification for SD plane wave backgrounds

Red flag: only 4 position-space integrals!

Expect 4(n-2) for *n*-point tree amplitude

Red flag: only 4 position-space integrals!

Expect 4(n-2) for *n*-point tree amplitude

Resolution: field redefinition recasts Yang-Mills action such that MHV amps. have *single* contact contribution [Rosly-Selivanov,

Mansfield]

Red flag: only 4 position-space integrals!

Expect 4(n-2) for *n*-point tree amplitude

Resolution: field redefinition recasts Yang-Mills action such that MHV amps. have *single* contact contribution [Rosly-Selivanov,

Mansfield]

Other sanity checks & features:

- Explicit checks at 3- and 4-points
- Perturbative limit (MHV_n+ background \rightarrow MHV_{n+1})
- Flat background limit

Full tree-level S-matrix?

Easy guess for N^kMHV, based on holomorphic maps $Z:\Sigma\cong\mathbb{CP}^1\to\mathbb{PT}$

$$\int \frac{\prod_{r=0}^{k+1} d^{4|4} U_r}{\operatorname{vol} \operatorname{GL}(2,\mathbb{C})} \operatorname{tr} \left(\prod_{i=1}^n \frac{d\sigma_i \operatorname{H}_i^{-1} a_i(Z(\sigma_i)) \operatorname{H}_i}{\sigma_i - \sigma_{i+1}} \right)$$

where:

- $Z(\sigma) = \sum_{r=0}^{k+1} U_r \sigma^r$ is a degree k+1 holomorphic map
- $\{\sigma_i\}\subset \Sigma$ punctures on $\Sigma\cong\mathbb{CP}^1$
- H holomorphic trivialization of E over $Z(\Sigma)$

Full tree-level S-matrix?

Easy guess for N^kMHV, based on holomorphic maps $Z: \Sigma \cong \mathbb{CP}^1 \to \mathbb{PT}$

$$\int \frac{\prod_{r=0}^{k+1} d^{4|4} U_r}{\operatorname{vol} \operatorname{GL}(2,\mathbb{C})} \operatorname{tr} \left(\prod_{i=1}^n \frac{d\sigma_i \operatorname{H}_i^{-1} a_i(Z(\sigma_i)) \operatorname{H}_i}{\sigma_i - \sigma_{i+1}} \right)$$

where:

- $Z(\sigma) = \sum_{r=0}^{k+1} U_r \sigma^r$ is a degree k+1 holomorphic map
- $\{\sigma_i\} \subset \Sigma$ punctures on $\Sigma \cong \mathbb{CP}^1$
- H holomorphic trivialization of E over $Z(\Sigma)$

Only 4(k+1) integrals for $N^kMHV!$

Currently just a conjecture...but passes many tests!

Summary

Upshot: it *is* possible to make all-multiplicity statements in strong backgrounds!

Also a (more complicated) version of this story for gravity!

Many exciting things to do:

- Prove N^kMHV formula for k > 1
- Possible pheno applications (backreaction, beam depletion)
- Double copy on SD rad. backgrounds
- Generalize to non-chiral rad. backgrounds
- Other SD backgrounds (dyons, instantons)

Summary

Upshot: it *is* possible to make all-multiplicity statements in strong backgrounds!

Also a (more complicated) version of this story for gravity!

Many exciting things to do:

- Prove N^kMHV formula for k > 1
- Possible pheno applications (backreaction, beam depletion)
- Double copy on SD rad. backgrounds
- Generalize to non-chiral rad. backgrounds
- Other SD backgrounds (dyons, instantons)

Thanks!

Gravity formula

MHV graviton amplitude on SD rad. space-time:

$$\int_{\overline{\mathcal{M}}_{n,0}(\mathbb{PT},d)} d\mu_d \det'(\mathbb{H}^{\vee}) \sum_{t=0}^{n-d-3} \sum_{\rho_1,\dots,\rho_t} \det'(\mathbb{H}[\mathbf{a}]) e^{i F_n} \prod_{m=1}^t \mathcal{N}^{(\rho_m-2)}.$$